hadoop

Results 1 - 25 of 149Sort Results By: Published Date | Title | Company Name
By: Attunity     Published Date: Jan 14, 2019
This whitepaper explores how to automate your data lake pipeline to address common challenges including how to prevent data lakes from devolving into useless data swamps and how to deliver analytics-ready data via automation. Read Increase Data Lake ROI with Streaming Data Pipelines to learn about: • Common data lake origins and challenges including integrating diverse data from multiple data source platforms, including lakes on premises and in the cloud. • Delivering real-time integration, with change data capture (CDC) technology that integrates live transactions with the data lake. • Rethinking the data lake with multi-stage methodology, continuous data ingestion and merging processes that assemble a historical data store. • Leveraging a scalable and autonomous streaming data pipeline to deliver analytics-ready data sets for better business insights. Read this Attunity whitepaper now to get ahead on your data lake strategy in 2019.
Tags : data lake, data pipeline, change data capture, data swamp, hybrid data integration, data ingestion, streaming data, real-time data, big data, hadoop, agile analytics, cloud data lake, cloud data warehouse, data lake ingestion, data ingestion
     Attunity
By: Attunity     Published Date: Nov 15, 2018
With the opportunity to leverage new analytic systems for Big Data and Cloud, companies are looking for ways to deliver live SAP data to platforms such as Hadoop, Kafka, and the Cloud in real-time. However, making live production SAP data seamlessly available wherever needed across diverse platforms and hybrid environments often proves a challenge. Download this paper to learn how Attunity Replicate’s simple, real-time data replication and ingest solution can empower your team to meet fast-changing business requirements in an agile fashion. Our universal SAP data availability solution for analytics supports decisions to improve operations, optimize customer service, and enable companies to compete more effectively.
Tags : 
     Attunity
By: Attunity     Published Date: Nov 15, 2018
IT departments today face serious data integration hurdles when adopting and managing a Hadoop-based data lake. Many lack the ETL and Hadoop coding skills required to replicate data across these large environments. In this whitepaper, learn how you can provide automated Data Lake pipelines that accelerate and streamline your data lake ingestion efforts, enabling IT to deliver more data, ready for agile analytics, to the business.
Tags : 
     Attunity
By: Group M_IBM Q418     Published Date: Oct 15, 2018
The enterprise data warehouse (EDW) has been at the cornerstone of enterprise data strategies for over 20 years. EDW systems have traditionally been built on relatively costly hardware infrastructures. But ever-growing data volume and increasingly complex processing have raised the cost of EDW software and hardware licenses while impacting the performance needed for analytic insights. Organizations can now use EDW offloading and optimization techniques to reduce costs of storing, processing and analyzing large volumes of data. Getting data governance right is critical to your business success. That means ensuring your data is clean, of excellent quality, and of verifiable lineage. Such governance principles can be applied in Hadoop-like environments. Hadoop is designed to store, process and analyze large volumes of data at significantly lower cost than a data warehouse. But to get the return on investment, you must infuse data governance processes as part of offloading.
Tags : 
     Group M_IBM Q418
By: StreamSets     Published Date: Sep 24, 2018
The advent of Apache Hadoop™ has led many organizations to replatform their existing architectures to reduce data management costs and find new ways to unlock the value of their data. One area that benefits from replatforming is the data warehouse. According to research firm Gartner, “starting in 2018, data warehouse managers will benefit from hybrid architectures that eliminate data silos by blending current best practices with ‘big data’ and other emerging technology types.” There’s undoubtedly a lot to ain by modernizing data warehouse architectures to leverage new technologies, however the replatforming process itself can be harder than it would at first appear. Hadoop projects are often taking longer than they need to create the promised benefits, and often times problems can be avoided if you know what to avoid from the onset.
Tags : replatforming, age, data, lake, apache, hadoop
     StreamSets
By: SAS     Published Date: Aug 28, 2018
When designed well, a data lake is an effective data-driven design pattern for capturing a wide range of data types, both old and new, at large scale. By definition, a data lake is optimized for the quick ingestion of raw, detailed source data plus on-the-fly processing of such data for exploration, analytics and operations. Even so, traditional, latent data practices are possible, too. Organizations are adopting the data lake design pattern (whether on Hadoop or a relational database) because lakes provision the kind of raw data that users need for data exploration and discovery-oriented forms of advanced analytics. A data lake can also be a consolidation point for both new and traditional data, thereby enabling analytics correlations across all data. To help users prepare, this TDWI Best Practices Report defines data lake types, then discusses their emerging best practices, enabling technologies and real-world applications. The report’s survey quantifies user trends and readiness f
Tags : 
     SAS
By: TIBCO Software APAC     Published Date: Aug 15, 2018
TIBCO Spotfire® Data Science is an enterprise big data analytics platform that can help your organization become a digital leader. The collaborative user-interface allows data scientists, data engineers, and business users to work together on data science projects. These cross-functional teams can build machine learning workflows in an intuitive web interface with a minimum of code, while still leveraging the power of big data platforms. Spotfire Data Science provides a complete array of tools (from visual workflows to Python notebooks) for the data scientist to work with data of any magnitude, and it connects natively to most sources of data, including Apache™ Hadoop®, Spark®, Hive®, and relational databases. While providing security and governance, the advanced analytic platform allows the analytics team to share and deploy predictive analytics and machine learning insights with the rest of the organization, white providing security and governance, driving action for the business.
Tags : 
     TIBCO Software APAC
By: IBM     Published Date: Jul 05, 2018
Scalable data platforms such as Apache Hadoop offer unparalleled cost benefits and analytical opportunities. IBM helps fully leverage the scale and promise of Hadoop, enabling better results for critical projects and key analytics initiatives. The end-to- end information capabilities of IBM® Information Server let you better understand data and cleanse, monitor, transform and deliver it. IBM also helps bridge the gap between business and IT with improved collaboration. By using Information Server “flexible integration” capabilities, the information that drives business and strategic initiatives—from big data and point-of- impact analytics to master data management and data warehousing—is trusted, consistent and governed in real time. Since its inception, Information Server has been a massively parallel processing (MPP) platform able to support everything from small to very large data volumes to meet your requirements, regardless of complexity. Information Server can uniquely support th
Tags : 
     IBM
By: NetApp     Published Date: May 29, 2018
Read the IDC research report Shared Storage Offers Lower TCO than Direct-Attached Storage for Hadoop and NoSQL Deployments and learn how to: Unify insights across various data sources and multiple cloud deployments Reduce compute, capacity and operational costs Increase security and prevent data loss Plus, learn about the NetApp in-place analytics solution for your existing NAS data and how it can reduce infrastructure costs
Tags : 
     NetApp
By: BlueData     Published Date: Mar 13, 2018
In a benchmark study, Intel compared the performance of Big Data workloads running on a bare-metal deployment versus running in Docker containers with the BlueData software platform. This landmark benchmark study used unmodified Apache Hadoop* workloads
Tags : big data, big data analytics, hadoop, apache spark, docker
     BlueData
By: SAS     Published Date: Mar 06, 2018
When designed well, a data lake is an effective data-driven design pattern for capturing a wide range of data types, both old and new, at large scale. By definition, a data lake is optimized for the quick ingestion of raw, detailed source data plus on-the-fly processing of such data for exploration, analytics, and operations. Even so, traditional, latent data practices are possible, too. Organizations are adopting the data lake design pattern (whether on Hadoop or a relational database) because lakes provision the kind of raw data that users need for data exploration and discovery-oriented forms of advanced analytics. A data lake can also be a consolidation point for both new and traditional data, thereby enabling analytics correlations across all data. With the right end-user tools, a data lake can enable the self-service data practices that both technical and business users need. These practices wring business value from big data, other new data sources, and burgeoning enterprise da
Tags : 
     SAS
By: Snowflake     Published Date: Jan 25, 2018
Compared with implementing and managing Hadoop (a traditional on-premises data warehouse) a data warehouse built for the cloud can deliver a multitude of unique benefits. The question is, can enterprises get the processing potential of Hadoop and the best of traditional data warehousing, and still benefit from related emerging technologies? Read this eBook to see how modern cloud data warehousing presents a dramatically simpler but more power approach than both Hadoop and traditional on-premises or “cloud-washed” data warehouse solutions.
Tags : 
     Snowflake
By: Group M_IBM Q1'18     Published Date: Jan 04, 2018
IBM® InfoSphere® Big Match for Hadoop helps you analyze massive volumes of structured and unstructured customer data to gain deeper customer insights. It can enable fast, efficient linking of data from multiple sources to provide complete and accurate customer information—without the risks of moving data from source to source. The solution supports platforms running Apache Hadoop such as IBM Open Platform, IBM BigInsights, Hortonworks and Cloudera.
Tags : hadoop, infosphere, data, customer insights
     Group M_IBM Q1'18
By: SAS     Published Date: Oct 18, 2017
When designed well, a data lake is an effective data-driven design pattern for capturing a wide range of data types, both old and new, at large scale. By definition, a data lake is optimized for the quick ingestion of raw, detailed source data plus on-the-fly processing of such data for exploration, analytics and operations. Even so, traditional, latent data practices are possible, too. Organizations are adopting the data lake design pattern (whether on Hadoop or a relational database) because lakes provision the kind of raw data that users need for data exploration and discovery-oriented forms of advanced analytics. A data lake can also be a consolidation point for both new and traditional data, thereby enabling analytics correlations across all data. To help users prepare, this TDWI Best Practices Report defines data lake types, then discusses their emerging best practices, enabling technologies and real-world applications. The report’s survey quantifies user trends and readiness f
Tags : 
     SAS
By: SAS     Published Date: Oct 18, 2017
Want to get even more value from your Hadoop implementation? Hadoop is an open-source software framework for running applications on large clusters of commodity hardware. As a result, it delivers fast processing and the ability to handle virtually limitless concurrent tasks and jobs, making it a remarkably low-cost complement to a traditional enterprise data infrastructure. This white paper presents the SAS portfolio of solutions that enable you to bring the full power of business analytics to Hadoop. These solutions span the entire analytic life cycle – from data management to data exploration, model development and deployment.
Tags : 
     SAS
By: Hewlett Packard Enterprise     Published Date: Aug 02, 2017
In midsize and large organizations, critical business processing continues to depend on relational databases including Microsoft® SQL Server. While new tools like Hadoop help businesses analyze oceans of Big Data, conventional relational-database management systems (RDBMS) remain the backbone for online transaction processing (OLTP), online analytic processing (OLAP), and mixed OLTP/OLAP workloads.
Tags : database usage, database management, server usage, data protection
     Hewlett Packard Enterprise
By: IBM APAC     Published Date: Jul 09, 2017
In a recent report, Aberdeen's research suggests that Hadoop usage could be a catalyst for an enhanced and well-rounded data strategy. Read on to find out more.
Tags : hadoop, big data, data strategy
     IBM APAC
By: IBM     Published Date: Jul 06, 2017
In order to exploit the diversity of data available and modernize their data architecture, many organizations explore a Hadoop-based data environment for its flexibility and scalability in managing big data. Download this white paper for an investigation into the impact of Hadoop on the data, people, and performance of today's companies.
Tags : hadoop, flexibility, scalability, data architecture
     IBM
By: IBM     Published Date: Jul 06, 2017
Companies today increasingly look for ways to house multiple disparate forms of data under the same roof, maintaining original integrity and attributes. Enter the Hadoop-based data lake. While a traditional on-premise data lake might address the immediate needs for scalability and flexibility, research suggests that it may fall short in supporting key aspects of the user experience. This Knowledge Brief investigate the impact of a data lake maintained in a cloud or hybrid infrastucture.
Tags : data lake, user experience, knowledge brief, cloud infrastructure
     IBM
By: IBM     Published Date: Jul 06, 2017
Known by its iconic yellow elephant, Apache Hadoop is purpose-built to help companies manage and extract insight from complex and diverse data environments. The scalability and flexibility of Hadoop might be appealing to the typical CIO but Aberdeen's research shows a variety of enticing business-friendly benefits.
Tags : data management, yellow elephant, business benefits, information management
     IBM
By: SAS     Published Date: May 04, 2017
Should you modernize with Hadoop? If your goal is to catch, process and analyze more data at dramatically lower costs, the answer is yes. In this e-book, we interview two Hadoop early adopters and two Hadoop implementers to learn how businesses are managing their big data and how analytics projects are evolving with Hadoop. We also provide tips for big data management and share survey results to give a broader picture of Hadoop users. We hope this e-book gives you the information you need to understand the trends, benefits and best practices for Hadoop.
Tags : 
     SAS
By: SAS     Published Date: Apr 25, 2017
Organizations in pursuit of data-driven goals are seeking to extend and expand business intelligence (BI) and analytics to more users and functions. Users want to tap new data sources, including Hadoop files. However, organizations are feeling pain because as the data becomes more challenging, data preparation processes are getting longer, more complex, and more inefficient. They also demand too much IT involvement. New technology solutions and practices are providing alternatives that increase self-service data preparation, address inefficiencies, and make it easier to work with Hadoop data lakes. This report will examine organizations’ challenges with data preparation and discuss technologies and best practices for making improvements.
Tags : 
     SAS
By: IBM     Published Date: Apr 18, 2017
Apache Hadoop technology is transforming the economics and dynamics of big data initiatives by supporting new processes and architectures that can help cut costs, increase revenue and create competitive advantage. An effective big data integration solution delivers simplicity, speed, scalability, functionality and governance to produce consumable data. To cut through this misinformation and develop an adoption plan for your Hadoop big data project, you must follow a best practices approach that takes into account emerging technologies, scalability requirements, and current resources and skill levels.
Tags : data integration, data security, data optimization, data virtualization, database security, data migration, data assets, data delivery
     IBM
By: SAP     Published Date: Mar 09, 2017
Learn how CIOs can set up a system infrastructure for their business to get the best out of Big Data. Explore what the SAP HANA platform can do, how it integrates with Hadoop and related technologies, and the opportunities it offers to simplify your system landscape and significantly reduce cost of ownership.
Tags : 
     SAP
By: IBM     Published Date: Jan 27, 2017
As with most innovations in business information technology, the ultimate truth about cloud lies somewhere in between. There is little doubt that cloud-based infrastructures offer an immediate opportunity for smaller organizations to avoid the costly investment needed for a robust on-premises computing environment. Data can be found, processed and managed on the cloud without investing in any local hardware. Large organizations with mature on-premises computing infrastructures are looking to Hadoop platforms to help them benefit from the vast array of structured and unstructured data from cloud-based sources. Organizations have feet in both cloud and on-premises worlds. In fact, one could easily argue that we already live in a “hybrid” world.
Tags : 
     IBM
Start   Previous   1 2 3 4 5 6    Next    End
Search White Papers      

Add White Papers

Get your white papers featured in the Energy Efficiency Markets White Paper Library contact: Kevin@EnergyEfficiencyMarkets.com