data warehouses

Results 1 - 25 of 42Sort Results By: Published Date | Title | Company Name
By: SAP     Published Date: May 18, 2014
New data sources are fueling innovation while stretching the limitations of traditional data management strategies and structures. Data warehouses are giving way to purpose built platforms more capable of meeting the real-time needs of a more demanding end user and the opportunities presented by Big Data. Significant strategy shifts are under way to transform traditional data ecosystems by creating a unified view of the data terrain necessary to support Big Data and real-time needs of innovative enterprises companies.
Tags : sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
     SAP
By: Oracle     Published Date: Nov 28, 2017
Today’s leading-edge organizations differentiate themselves through analytics to further their competitive advantage by extracting value from all their data sources. Other companies are looking to become data-driven through the modernization of their data management deployments. These strategies do include challenges, such as the management of large growing volumes of data. Today’s digital world is already creating data at an explosive rate, and the next wave is on the horizon, driven by the emergence of IoT data sources. The physical data warehouses of the past were great for collecting data from across the enterprise for analysis, but the storage and compute resources needed to support them are not able to keep pace with the explosive growth. In addition, the manual cumbersome task of patch, update, upgrade poses risks to data due to human errors. To reduce risks, costs, complexity, and time to value, many organizations are taking their data warehouses to the cloud. Whether hosted lo
Tags : 
     Oracle
By: Juniper Networks     Published Date: Oct 19, 2015
Datacenters are the factories of the Internet age, just like warehouses, assembly lines, and machine shops were for the industrial age. Over the course of the past several years, riding the wave of modernization, datacenters have become the heart and soul of the financial industry, which each year invests over $480 billion in datacenter infrastructure of hardware, software, networks, and security and services.
Tags : juniper, datacenter, threat, ciso, enterprise, data, customer
     Juniper Networks
By: Google     Published Date: Oct 26, 2018
Modernizing your data warehouse is one way to keep up with evolving business requirements and harness new technology. For many companies, cloud data warehousing offers a fast, flexible, and cost-effective alternative to traditional on-premises solutions. This report sponsored by Google Cloud, TDWI examines the rise of cloud-based data warehouses and identifies associated opportunities, benefits, and best practices. Learn more about cloud data warehousing with strategic advice from Google experts.
Tags : 
     Google
By: Google     Published Date: Jan 24, 2019
Modernizing your data warehouse is one way to keep up with evolving business requirements and harness new technology. For many companies, cloud data warehousing offers a fast, flexible, and cost-effective alternative to traditional on-premises solutions. This report sponsored by Google Cloud, TDWI examines the rise of cloud-based data warehouses and identifies associated opportunities, benefits, and best practices. Learn more about cloud data warehousing with strategic advice from Google experts.
Tags : 
     Google
By: Oracle PaaS/IaaS/Hardware     Published Date: Jul 25, 2017
"With the introduction of Oracle Database In-Memory and servers with the SPARC S7 and SPARC M7 processors Oracle delivers an architecture where analytics are run on live operational databases and not on data subsets in data warehouses. Decision-making is much faster and more accurate because the data is not a stale subset. And for those moving enterprise applications to the cloud, Real-time analytics of the SPARC S7 and SPARC M7 processors are available both in a private cloud on SPARC servers or in Oracle’s Public cloud in the SPARC cloud compute service. Moving to the Oracle Public Cloud does not compromise the benefits of SPARC solutions. Some examples of utilizing real time data for business decisions include: analysis of supply chain data for order fulfillment and supply optimization, analysis of customer purchase history for real time recommendations to customers using online purchasing systems, etc. "
Tags : 
     Oracle PaaS/IaaS/Hardware
By: Teradata     Published Date: Jan 30, 2015
It is hard for data and IT architects to understand what workloads should move, how to coordinate data movement and processing between systems, and how to integrate those systems to provide a broader and more flexible data platform. To better understand these topics, it is helpful to first understand what Hadoop and data warehouses were designed for and what uses were not originally intended as part of the design.
Tags : teradata, data, big, data, analytics. insights, solutions, business opportunities, challenges, technology, framework, apache, hadoop, architecture, warehouse, optimization, security, scalability, consistency, flexibility, data management
     Teradata
By: RedPoint Global     Published Date: May 11, 2017
While they’re intensifying, business-data challenges aren’t new. Companies have tried several strategies in their attempt to harness the power of data in ways that are feasible and effective. The best data analyses and game-changing insights will never happen without the right data in the right place at the right time. That’s why data preparation is a non-negotiable must for any successful customer-engagement initiative. The fact is, you can’t simply load data from multiple sources and expect it to make sense. This white paper examines the shortcomings of traditional approaches such as data warehouses/data lakes and explores the power of connected data.
Tags : customer engagement, marketing data, marketing data analytics, customer data platform
     RedPoint Global
By: IBM     Published Date: May 17, 2016
Wikibon conducted in-depth interviews with organizations that had achieved Big Data success and high rates of returns. These interviews determined an important generality: that Big Data winners focused on operationalizing and automating their Big Data projects. They used Inline Analytics to drive algorithms that directly connected to and facilitated automatic change in the operational systems-of-record. These algorithms were usually developed and supported by data tables derived using Deep Data Analytics from Big Data Hadoop systems and/or data warehouses. Instead of focusing on enlightening the few with pretty historical graphs, successful players focused on changing the operational systems for everybody and managed the feedback and improvement process from the company as a whole.
Tags : ibm, big data, inline analytics, business analytics, roi
     IBM
By: Teradata     Published Date: May 02, 2017
Should the data warehouse be deployed on the cloud? Read this IDC Research Spotlight to learn more.
Tags : data warehouse, data storage, data management, data analytics, data preparation, data integration, system integration
     Teradata
By: IBM     Published Date: Mar 29, 2017
One of the biggest changes facing organizations making purchasing and deployment decisions about analytic databases — including relational data warehouses — is whether to opt for a cloud solution. A couple of years ago, only a few organizations selected such cloud analytic databases. Today, according to a 2016 IDC survey, 56% of large and midsize organizations in the United States have at least one data warehouse or mart deploying in the cloud.
Tags : cloud, analytics, data, organization, ibm
     IBM
By: IBM     Published Date: Nov 08, 2017
In this paper, you'll learn how organizations are adopting increasingly sophisticated analytics methods, that analytics usage trends are placing new demands on rigid data warehouses, and what's needed is hybrid data warehouse architecture that supports all deployment models.
Tags : data warehouse, analytics, ibm, deployment models
     IBM
By: Group M_IBM Q1'18     Published Date: Jan 23, 2018
In this paper, you'll learn how organizations are adopting increasingly sophisticated analytics methods, that analytics usage trends are placing new demands on rigid data warehouses, and what's needed is hybrid data warehouse architecture that supports all deployment models.
Tags : data warehouse, analytics, hybrid data warehouse, development model
     Group M_IBM Q1'18
By: Oracle     Published Date: Sep 21, 2018
Agility and speed are required in the cloud economy. Modernize data warehouses with built-in adaptive machine learning to eliminate manual labor for administrative tasks. With Oracle, businesses can now build data warehouses or data marts in minutes.
Tags : 
     Oracle
By: SAS     Published Date: Nov 10, 2014
Learn how data is evolving and the 7 reasons why a comprehensive data management platform supersedes the data integration toolbox that you are using these days.
Tags : sas, data integration, data evolution, comprehensive data, data management, data virtualization, data warehouses, data profiling, metadata management, data center
     SAS
By: SAS     Published Date: Nov 10, 2014
Learn how this upcoming year should be the year you make your big data actionable and see what else you should be doing to maximize its potential.
Tags : sas, data integration, data evolution, comprehensive data, data management, data virtualization, data warehouses, data profiling, metadata management, data center
     SAS
By: SAP Inc.     Published Date: Jul 28, 2009
Although many organizations have made significant investments in data collection and integration (through data warehouses and the like), it is a rare enterprise that can analyze and redeploy its accumulated data to actually drive business performance.  In the years to come, as globalization and increased reliance on the Internet further complicate, accelerate and intensify marketplace conditions, actionable business intelligence promises to deliver a formidable competitive advantage to firms that leverage its power.
Tags : sap, business intelligence, business insight, business transparency, cross-enterprise data, inter-enterprise data, data integration, enterprise applications, data management
     SAP Inc.
By: Pentaho     Published Date: Apr 28, 2016
As data warehouses (DWs) and requirements for them continue to evolve, having a strategy to catch up and continuously modernize DWs is vital. DWs continue to be relevant, since as they support operationalized analytics, and enable business value from machine data and other new forms of big data. This TDWI Best Practices report covers how to modernize a DW environment, to keep it competitive and aligned with business goals, in the new age of big data analytics. This report covers: • The many options – both old and new – for modernizing a data warehouse • New technologies, products, and practices to real-world use cases • How to extend the lifespan, range of uses, and value of existing data warehouses
Tags : pentaho, data warehouse, modernization, big data, bug data analytics, best practices, networking, it management, wireless, platforms, data management, business technology
     Pentaho
By: BMC ASEAN     Published Date: Dec 18, 2018
Big data projects often entail moving data between multiple cloud and legacy on-premise environments. A typical scenario involves moving data from a cloud-based source to a cloud-based normalization application, to an on-premise system for consolidation with other data, and then through various cloud and on-premise applications that analyze the data. Processing and analysis turn the disparate data into business insights delivered though dashboards, reports, and data warehouses - often using cloud-based apps. The workflows that take data from ingestion to delivery are highly complex and have numerous dependencies along the way. Speed, reliability, and scalability are crucial. So, although data scientists and engineers may do things manually during proof of concept, manual processes don't scale.
Tags : 
     BMC ASEAN
By: Oracle     Published Date: Apr 16, 2018
A velocidade e o volume de entrada de dados estão gerando demandas esmagadoras sobre os data marts tradicionais, os data warehouses e os sistemas analíticos. Uma solução em nuvem de data warehouse tradicional pode ajudar os clientes a suprirem tais demandas? Muitos clientes estão comprovando o valor dos data warehouses na nuvem através dos ambientes de testes ou de inovação, dos data marts na área de negócios e backup de banco de dados.
Tags : clientes, estao, migrando, data, warehouses, nuvem
     Oracle
By: Oracle     Published Date: Apr 16, 2018
La velocidad y el volumen de los datos entrantes están dando lugar a una gran demanda en los centros de datos tradicionales, repositorios de datos empresariales y sistemas analíticos. ¿Puede una solución de almacén de datos tradicional en la nube ayudar a los clientes a satisfacer estas demandas? Muchos clientes están comprobando el valor de los repositorios de datos en la nube a través de entornos “de prueba”, repositorios de datos según el área de negocios y respaldos de base de datos.
Tags : clientes, trasladan, sus, data, warehouses
     Oracle
By: AWS     Published Date: Jun 20, 2018
Data and analytics have become an indispensable part of gaining and keeping a competitive edge. But many legacy data warehouses introduce a new challenge for organizations trying to manage large data sets: only a fraction of their data is ever made available for analysis. We call this the “dark data” problem: companies know there is value in the data they collected, but their existing data warehouse is too complex, too slow, and just too expensive to use. A modern data warehouse is designed to support rapid data growth and interactive analytics over a variety of relational, non-relational, and streaming data types leveraging a single, easy-to-use interface. It provides a common architectural platform for leveraging new big data technologies to existing data warehouse methods, thereby enabling organizations to derive deeper business insights. Key elements of a modern data warehouse: • Data ingestion: take advantage of relational, non-relational, and streaming data sources • Federated q
Tags : 
     AWS
By: SRC,LLC     Published Date: Jun 01, 2009
Companies spend millions of dollars every year on building data warehouses, buying business intelligence (BI) software tools and managing their analytic processes in the hope of gaining consumer insight and winning market share. Yet, many companies fail to realize the full benefits of their technology investments because they are hamstrung by the layers of expertise and the complexity of technology tools needed to integrate various data warehouses and associated tools within their existing analytic environments. Since analysis is only as good as the accessibility, timeliness and accuracy of the information being analyzed, the interoperability of any data warehouse with any analytic environment is essential to achieving insightful, actionable analysis and making better decisions.
Tags : src, enterprise, streamline, analytics, economy, analytic imperative, business intelligence, seamless, data warehouse, interoperability, analytic environment, data assets, report generation, output options, total cost of ownership, tco, roi, return on investment, olap, enterprise applications
     SRC,LLC
By: DataFlux     Published Date: Jan 07, 2011
This white paper introduces and examines a breakthrough platform solution designed to drive parallel-process data integration - without intensive pre-configuration - and support full-lifecycle data management from discovery to retirement.
Tags : dataflux, enterprise data, data integration, configuration, lifecycle data management, data warehouses
     DataFlux
By: Oracle Corporation     Published Date: May 11, 2012
This white paper presents two case studies that illustrate how Oracle Exadata increased storage capacity for data warehouses by 150%, reduced operational and database running costs by 50%, and on average improved database query performance by 10x.
Tags : oracle, data warehousing, database, exadata, database machine, infrastructure, operation, operation costs, mobile, growth, payback, architecture, demands, enterprise applications, data management
     Oracle Corporation
Previous   1 2    Next    
Search White Papers      

Add White Papers

Get your white papers featured in the Energy Efficiency Markets White Paper Library contact: Kevin@EnergyEfficiencyMarkets.com